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Abstract 

 

This article presents a theoretical and experimental investigation of a 3-player sequential-

entry variant of Hotelling’s locational choice model (1929). Martin Osborne and Amoz 

Kats offer a conjecture about the unique subgame-perfect Nash equilibrium (SPNE) 

outcome in this game, which I prove for n = 3: The first and the last player enter at 

the median, and the middle player opts out. When used to model political elections, 

the character of this equilibrium is then related to Duverger’s Law, as a two-party system 

will emerge. Testing this conjecture in the lab reveals that in the beginning, the first 

and middle players keep out the last player. However, after many repetitions, play 

converges toward the unique SPNE outcome. 
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1 Introduction 

 
In this paper I analyze a game that was first presented by Martin Osborne and Amoz Kats, 

which I will henceforth call the sequential Hotelling game:1 

“Each player 1,. . ., n chooses a member of the set [0, 1] ∪ OUT (i.e. either chooses 

a “location” or opts out). The choices are made sequentially (starting with player 1), 

and every player is perfectly informed at all times. The outcome of the game is 

determined as follows. After all players have chosen their actions, each player who 

has chosen a location receives votes from a continuum of citizens; the player who 

receives the most votes wins. The distribution of citizens’ ideal points is nonatomic, 

with support [0,1]. A player who chooses the same position x as k − 1 other players 

obtains the fraction 1/k of the votes of all the citizens whose ideal points are closer 

to x than to any other chosen location. [...] Each player obtains the payoff 0 if she 

chooses OUT, the payoff 1/k if she is among the k players who receive the maximal 

fraction of votes, and −1 otherwise.”2,3 

 

 

Martin Osborne and Amoz Kats offer a conjecture4 about the subgame-perfect Nash- 

equilibrium (SPNE) outcome in this sequential Hotelling game for an arbitrary number of players n: 

Osborne-Kats Conjecture. The sequential Hotelling game has a unique SPNE outcome, in 

which players 1 and n choose the median location m and all other players choose OUT. 

 
This game is interesting in two ways: First, as the only game (to my knowledge) to 

feature a first-mover and a last-mover advantage simultaneously, it is unique in a game 

theoretical sense. Second, the specific character of the equilibrium is related to Duverger’s 

Law:5 When the game is interpreted as modeling the location decisions of political actors 

 
1 The sequential Hotelling game is a variant of Hotelling’s locational choice model (1929) and its refinement by 

Duverger (1954). 
2 In the original game description the term “position” is used instead of the term “location”; this was changed 

for consistency reasons because I use the term location in the experiment. 
3 Freely available on Martin Osborne’s homepage under 

http://www.economics.utoronto.ca/osborne/research/CONJECT.HTM 
4 A proof for the general case does not exist yet. 
5 A plurality voting system often leads to a two-party system; Duverger (1954). 

http://www.economics.utoronto.ca/osborne/research/CONJECT.HTM
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on a left-right spectrum, a two-party system will emerge. 

I analyze the three-player variant of this game, for which I derive all SPNE and prove 

the conjecture for n = 3.6 Furthermore, I implement the game under laboratory conditions 

and conduct an experiment, in which the Osborne-Kats conjecture makes a strong behavioral 

prediction in the lab, as the SPNE outcome is unique.7 Subjects play the sequential Hotelling 

game as a finitely repeated game, with the treatments differing (mostly) in game length. 

Initial play in the experiment leads to an outcome that favors players 1 and 2, which 

is not in accordance with the SPNE in the sequential Hotelling game. As the game 

progresses, however, players learn to best respond, resulting in convergence toward the 

unique SPNE outcome after many repetitions of the game. 

As Hotelling’s original locational choice model (1929) and its derivations are highly 

relevant in the fields of political science and industrial organization, numerous theory 

papers exist on this topic; see Osborne (1995) for a general review. While the 

simultaneous move case and its variants have also been analyzed experimentally,8 

changes in timing, i.e. the sequential entry case, have only been analyzed theoretically,9 

so never empirically or experimentally. Therefore, my contribution to the literature is a 

theoretical and experimental investigation of the Hotelling game with sequential entry. 
 

 
6 Detailed arguments for the unique SPNE outcome in the special case of n = 3 were already made in 

Osborne (2004) and on http://www.economics.utoronto.ca/osborne/research/ARG.HTM, but to the 
author’s knowledge a formal proof does not exist in the literature. 
7 The lab implementation is not exactly the same as the sequential Hotelling game, as the voter support is 
continuous in theory but must necessarily be discrete in the lab; more on that in Section 2.2. 
8 See Brown-Kruse, Cronshaw and Schenk (1993), Brown-Kruse and Schenk (2000), Collins and Sherstyuk 

(2000), Huck, Müller and Vriend (2000), Barreda-Tarrazona et al. (2011) and Kephart and Friedman 
(2015). 
9 See Prescott and Visscher (1977), Neven (1987), Eiselt and Laporte (1997), Osborne (2004), Rabas 
(2011), Bandyopadhyay et al. (2016), as well as Kress and Pesch (2012) for an overview. 

http://www.economics.utoronto.ca/osborne/research/ARG.HTM
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2 Theory 

 
2.1 The Sequential Hotelling Game 

 

Each of the players i = 1, . . . , n chooses as his action 𝑎𝑖  an element of the set [0, 1] ∪ 

{OUT}. That is, each player either chooses a location (𝑎𝑖  ∈ [0, 1] \ OUT) or opts out (𝑎𝑖  = 

OUT). The choices are made sequentially starting with player 1 and ending with player n, and 

every player observes all previous choices. 

The outcome of the game is then determined as follows: After all players have chosen 

their actions, each player i who has chosen a location 𝑎𝑖  ≠  OUT receives vote shares 

𝑣𝑖(𝑎1, 𝑎2, 𝑎3) ∈ (0,1], where ∑ 𝑣𝑛
𝑖=1 i = 1, from a continuum of voters. The player(s) who 

receive(s) the highest vote shares vmax = max(𝑣1, 𝑣2, … , 𝑣𝑛) win(s); a player who has chosen 

𝑎𝑖  = OUT receives no votes and cannot win. Each voter simply votes for the player whose 

chosen location 𝑎𝑖 ≠ OU T is closest to the voter’s ideal location, and the distribution of voters’ 

ideal locations is uniform along the interval [0, 1] and nonatomic.10 Furthermore, if a player i 

has chosen the same location𝑎𝑖   as z − 1 other players, he obtains the fraction 𝑣𝑖 = 1/z of the 

votes of all voters whose ideal location is closer to 𝑎𝑖  than to any other chosen location. 

Each player i then obtains payoff πi according to the following formula, where s denotes 

the number of players with 𝑣𝑖 = vmax, i.e. s = |{i ∈ {1, . . . , n} |𝑣𝑖  = vmax}|: 

 

𝜋𝑖 = {

0 𝑖𝑓 𝑎𝑖 = 𝑂𝑈𝑇
1

𝑠
𝑖𝑓 𝑎𝑖 ∈ [0,1] 𝑎𝑛𝑑 𝑣𝑖 = 𝑣max

−1 𝑖𝑓 𝑎𝑖 ∈ [0,1] 𝑎𝑛𝑑 𝑣𝑖 < 𝑣max

 

That is, each player obtains payoff 0 if he chooses 𝑎𝑖  = OUT , payoff 1/s if he is among 

the s players who receive the maximal share of votes, and −1 if there exists a player who has 

more votes. This implies that each player wants to enter the competition if and only if he has 

some chance of winning. 

 

 
10 This means that if a voter’s favorite location is x*, he is indifferent between the locations x*−s and x*+s. 
This also means that the voters do not vote strategically, and voting is sincere. 
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For readability, I also introduce two definitions: 

Definition 1. I define “choosing a location” and “entering the game” as choosing an 𝑎𝑖 ≠ 

OUT. Furthermore, in the sequential Hotelling game, I define choosing an 𝑎𝑖  < t as 𝑎𝑖  ∈ 

[0, t). Finally, if 𝑎𝑖  = OUT, player i  “stays out of the game”. 

Definition 2. In the Sequential Hotelling Game, I call a player “winning” if he has payoff 

𝜋𝑖  > 0, and I call a player “losing” if he has payoff 𝜋𝑖 = −1. Furthermore, a player “wins 

alone” if he has strictly more votes than any other player. 

 

 
2.1.1 The SPNE for the Sequential Hotelling Game 

 

In this paper, I will look at the case of n = 3. The different subgame-perfect Nash-equilibria 

for n = 3 are characterized as follows:11 

 

                𝑎1
∗ = 0.5, 𝑎2

∗(𝑎1) = 

{
 
 

 
 

0.5 𝑖𝑓 𝑎1 = 𝑂𝑈𝑇

[
2

3
−
𝑎1

3
,
2

3
+ 𝑎1] 𝑖𝑓 𝑎1 <

1

6

[
2−𝑎1

3
, 1 − 𝑎1] 𝑖𝑓 

1

6
≤ 𝑎1 ≤ 0.5

𝑂𝑈𝑇 𝑖𝑓 𝑎1 = 0.5

  (1) 

while player 3 chooses according to the following rules: 

 
1. If the set 𝐴 = {𝑎3|𝑣3 > max(𝑣1, 𝑣2)} is nonempty, i.e. if player 3 can attain 𝑣3 >
max(𝑣1, 𝑣2) by choosing some 𝑎3 ∈ [0,1] he chooses one of these payoff-maximizing 

choices. 

2. If set A is empty and the set 𝐵 = {𝑎3|𝑣3 = max(𝑣1, 𝑣2)} is nonempty, i.e. player 3 can 
attain 𝑣3 = max(𝑣1, 𝑣2) by choosing some 𝑎3 ∈ [0,1], he chooses one of them. 

3. If both sets A and B are empty, a3 = OUT . 

 
11 Because of the symmetrical nature of the game around the median location 0.5, there are certain 
symmetries in this game. In general, if we make any statement concerning outcome, vote shares or best 
responses about a choice triple (𝑎1, 𝑎2, 𝑎3), the same statement is still true if we consider the choice triple 

(1 – 𝑎1, 1 − 𝑎2, 1 − 𝑎3) (here I define for 𝑎𝑖 = OUT that 1 −  𝑎𝑖 = OUT). Or in other words, 

𝜋𝑖(𝑎1, 𝑎2, 𝑎3) =  𝜋𝑖(1 − 𝑎1, 1 − 𝑎2, 1 − 𝑎3) and 𝑣𝑖(𝑎1, 𝑎2, 𝑎3) =  𝑣𝑖(1 − 𝑎1, 1 − 𝑎2, 1 − 𝑎3) ∀ 𝑖. For best 

responses, it holds that if 𝑎∗ is a best response to 𝑎1 (given 𝑎∗), then 1 − 𝑎∗ is a best response to 1 − 𝑎1 
(given 1 − 𝑎∗). For player 3, if 𝑎∗ is a best response to (𝑎1, 𝑎2), 1 − 𝑎∗ is a best response to (1 − 𝑎1, 1 −
𝑎2). Therefore, cases of 𝑎1 = 0.5 + s are symmetrical to 𝑎1 = 0.5 − s (for s ≤ 0.5), and I can omit all 

cases 𝑎1 > 0.5 w.l.o.g. 
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It is important to note that while the subgame-perfect Nash-equilibrium outcome is 

unique, the equilibria themselves are not.12 In equation (1), we can clearly see why this 

is the case: After many histories, the best responses by players 2 and 3 are not unique 

off the equilibrium path. We see for example that for player 2, there is an infinite number 

of best responses given 𝑎1 <
1

6
. The same is true for player 3, as there are many cases 

where there is a range of best responses following (a1, a2), giving an infinite number of 

subgame-perfect Nash equilibria. 

The important fact is that according to any SPNE, play along the equilibrium path 

consists of 𝑎1 = 0.5, 𝑎2 = OUT, 𝑎3 = 0.5, in accordance with the Osborne-Kats-conjecture. 

The derivation of the above SPNE as well as the uniqueness of the outcome can be found 

in appendix A.1. 

 

 

2.2 Lab Implementation 

 
The problem with the transition of the sequential Hotelling game as described above to 

a laboratory environment is that a player’s action space is continuous in theory, but 

necessarily discrete in the lab. Furthermore, it is crucial that player 3 has the option to 

choose an a3 closer to the median than player 2.13 

I solve this problem by giving subjects different discrete action spaces depending on 

their positions, i.e. the order in which the players choose their actions 𝑎𝑖 ∈ 𝑋𝑖: 

• A player in position 1 can choose from X1 = {OUT, 1, 9, 17, 25, 33, 41, 49} 

• A player in position 2 can choose from X2 = {OUT, 1, 5, 9, . . . , 41, 45, 49} 

• A player in position 3 can choose from X3 = {OUT, 1, 3, 5, . . . , 45, 47, 49} 

In this way, subjects who choose later have more options than subjects who choose 

 
12 This fact is also pointed out in Osborne (2004). 
13 If this were not the case, the unique SPNE outcome for n = 3 would be given by 𝑎1

∗ = 𝑂𝑈𝑇, 𝑎2
∗ = 0.5, 

𝑎3
∗ = 0.5, a different equilibrium outcome. The reasoning for this is the following: Assuming player 1 

chooses 𝑎1 = 0.5, player 2 can adopt the location 𝑎2 = 0.5 − 𝑐 closest to 0.5 that is possible, while player 

3 now has no option to locate closer to the middle than player 3, so he chooses 𝑎3 = 𝑂𝑈𝑇. Therefore, 

player 1 would not enter the game, and the other 2 players locate at the median.  
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earlier. The set X = {1, 2, 3, . . . , 47, 48, 49} contains all locations in the game. The locations 

available to be chosen by each player i are defined as 𝑋𝑖 \ {𝑂𝑈𝑇}. 

The outcome of the game is determined similarly as in the sequential Hotelling game: 

After all players have chosen their actions, each player who has chosen a location, i.e. 𝑎𝑖 ∈ 

𝑋𝑖  {𝑂𝑈𝑇}, receives a number of points 𝑣𝑖(𝑎1, 𝑎2, 𝑎3) ∈ (0,48], while a player who chooses 

𝑎𝑖 = OUT receives no points, i.e. 𝑣𝑖 = 0. Each location x ∈ [2, 3, 4, . . . , 46, 47, 48] is worth 

one point, and the locations on the edges (x = 1 and x = 49) are worth half a point. Therefore, 

the sum of points to be gained is 48. Each player receives points from each location x that is 

closer to his chosen location 𝑎𝑖 than to any other location that was chosen by another player. 

If a player i has chosen the same location 𝑎𝑖 as z − 1 other players, he obtains the fraction 

𝑣𝑖 = 1/z of the points from locations that are closer to 𝑎𝑖 than to any other chosen location. 

Furthermore, if an unchosen location is equally distant between two chosen locations 𝑎𝑖 and 

𝑎𝑗, the point for this unchosen location is split evenly between the players who have chosen 

𝑎𝑖 and 𝑎𝑗. The player(s) who receive(s) the largest share of points vmax = max(v1, v2, v3) 

win(s), given that vmax ≠ 0. 

Each player i then obtains payoff 𝜋𝑖 according to the following formula, where s denotes 

the number of players with 𝑣𝑖 = vmax who choose a location, i.e. s = |{i ∈ {1, 2, 3} |𝑣𝑖 = 

vmax ∩ 𝑣𝑖 ≠ 0}|: 

𝜋𝑖 = {

0.25 𝑖𝑓 𝑣𝑖 = 0
2

𝑠
𝑖𝑓 𝑣𝑖 = 𝑣

𝑚𝑎𝑥  𝑎𝑛𝑑  𝑣𝑖 ≠ 0

0.05 𝑖𝑓 𝑣𝑖 < 𝑣
𝑚𝑎𝑥  𝑎𝑛𝑑  𝑣𝑖 ≠ 0

 

That is, each player gets 0.25 if he chooses 𝑎𝑖   = OUT, payoff 2/s if the player is 

among the s players who receive the maximal share of points, and 0.05 if there exists a 

player who has more points.14 

The definitions of winning, losing and entering the game for the lab game are as  

follows: 

Definition 3. I define choosing an 𝑎𝑖 < 𝑡 as choosing an 𝑎𝑖 ∈ {𝑋𝑖  ∩ [1, 𝑡)} in the lab game.15 

 
14 For the lab game to have qualitatively the same incentives as the sequentlial Hotelling game, two 
conditions must be fulfilled as far as the payoff parameters are concerned: If player i wins, his payoff 
must always be higher than if he chooses 𝑎𝑖 = 𝑂𝑈𝑇 (which is satisfied here, as 2/n is always higher than 

0.25), and if a player chooses OUT he must have a higher payoff than if he loses, which is also satisfied. 
15 For example, if player 1 chooses an a1 < 17, he either chooses a1 = 1 or a1 = 9. 
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Definition 4. In the lab game, I call a player “winning” if he has payoff 𝜋𝑖 > 0.25, and I call a 

player “losing” if he has payoff 𝜋𝑖 = 0.05. Furthermore, a player “wins alone” if he has 

strictly more votes than any other player. 

Definition 5. In the lab game, I say that a player “enters the game” if that player chooses 

any location, i.e. 𝑎𝑖 ∈ 𝑋𝑖  𝑂𝑈𝑇, and a player “stays out of the game” if 𝑎𝑖 = OUT. 

 
A The SPNE in the Lab Implementation 

 

Analogous to the sequential Hotelling game, the SPNE for the lab implementation is not 

unique, but the SPNE outcome is. The SPNE for the lab implementation is characterized by16 

 

𝑎1
∗ = 25, 𝑎2

∗(𝑎1) = 

{
 
 

 
 

25 𝑖𝑓 𝑎1 = 𝑂𝑈𝑇
37 𝑖𝑓 𝑎1 = 1

{33,37} 𝑖𝑓 𝑎1 = 9
29 𝑖𝑓 𝑎1 = 17
𝑂𝑈𝑇 𝑖𝑓 𝑎1 = 25,

    

 

While player 3 chooses according to the following rule: 

 

1. If the set A = {a3|v3 > max(v1, v2)} is nonempty, i.e. if player 3 can attain v3 > 

max(v1, v2) by choosing some a3 ∈ X3, he chooses one of these payoff-maximizing 

choices. 

2. If set A is empty and the set B = {a3|v3 = max(v1, v2)} is nonempty, i.e. player 3 can 

attain v3 = max(v1, v2) by choosing some a3 ∈ X3, he chooses one of them. 

3. If both sets A and B are empty, a3 = OUT . 

 

 
16 Similar to footnote 11, because of the symmetrical nature of the game around the median location 25, 
there are certain symmetries in this game. In general, if we make any statement concerning outcome, 
vote shares or best responses about a choice triple (𝑎1, 𝑎2, 𝑎3), the same statement is still true if we 

consider the choice triple (50 – 𝑎1, 50 − 𝑎2, 50 − 𝑎3) (here I define for 𝑎𝑖 = OUT that 50 −  𝑎𝑖 = OUT). 

Or in other words, 𝜋𝑖(𝑎1, 𝑎2, 𝑎3) =  𝜋𝑖(50 − 𝑎1, 50 − 𝑎2, 50 − 𝑎3) and 𝑣𝑖(𝑎1, 𝑎2, 𝑎3) =  𝑣𝑖(50 − 𝑎1, 50 −
𝑎2, 50 − 𝑎3) ∀ 𝑖. For best responses, if 𝑎∗ is a best response to 𝑎1 (given 𝑎∗), then 50 − 𝑎∗ is a best 

response to 50 − 𝑎1 (given 50 − 𝑎∗). For player 3, if 𝑎∗ is a best response to (𝑎1, 𝑎2), 50 − 𝑎∗ is a best 

response to (50 − 𝑎1, 50 − 𝑎2). Therefore, cases of 𝑎1 = 25 + s are symmetrical to 𝑎1 = 25 − s (for s < 

25), and I can omit all cases 𝑎1 > 25 w.l.o.g. 
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Akin to the sequential Hotelling game, we easily see that the SPNE is not unique, as 

player 2 can choose to play either 𝑎2 = 33 or 𝑎2 = 37 following 𝑎1 = 25, as both choices 

are best responses. Furthermore, after many histories, the best response for player 3 is not 

unique off the equilibrium path. The complete SPNE, including all best responses given all 

histories for all players, can be found in appendix A.2. 

 

With these action spaces and parameter choices, I chose an implementation for the 

lab that changes as little as possible compared to the sequential Hotelling game, while 

preserving the equilibrium prediction and also the intuition behind it. 

 

The intuition for the SPNE in terms of the lab game (and therefore similarly in the 

sequential Hotelling game) is the following: 

Consider the case of 𝑎1 < 25, i.e. player 1 choosing to enter the game but not at the median 

location. In this case, player 2 best responds by locating to the right of the median in such a 

way that it is not possible for player 3 to choose a location such that v3 ≥ max(v1, v2), and 

such that v2 > v1 if a3 = OUT. This means that player 2 can guarantee himself a win in all 

subgames following 𝑎1 < 25. Therefore, as player 1 can guarantee himself the higher payoff 

of 0.25 by choosing OUT, 𝑎1 < 25 cannot be part of an SPNE. 

Next, consider the case of 𝑎1 = 25. Then the best response for player 2 is to play 𝑎2 = OUT: 

If player 2 chooses any location to the left of the median or the median itself, player 3 

chooses a location close to and to the right of the median and wins. Therefore, player 2 

will play 𝑎2 = OUT. Now player 3 can only tie with player 1 for first place by choosing 𝑎3  = 25 

(i.e. the median), which is profit maximizing for him. Player 1 is therefore better off choosing 

𝑎1 = 25 than 𝑎1 = OUT and splits the win with player 3. 

So when we put this together, play along the equilibrium path consists of 𝑎1 = 25, 

𝑎2 = OUT and 𝑎3 = 25, which is in accordance with the Osborne-Katz-conjecture, as the first 

and the last player enter at the median and the middle player stays out. 
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2.3 The Experiment 

 

I conducted eleven sessions at the Vienna Center for Experimental Economics (VCEE) 

with 132 subjects. Sessions lasted about 2 hours on average. The range of earnings was 

between €6 and €53, with an average payment of about €26. The experiment was 

programmed and conducted with the software z-Tree (Fischbacher (2007)), and ORSEE 

(Greiner (2004)) was used for recruiting subjects. 

 
2.3.1 Parameters 

 

The game is played over 24, 48 or 72 rounds, depending on the treatment. In each 

round, subjects were randomly rematched with two other subjects from the matching pool 

of 12 subjects to form groups of three. Each subject was then randomly assigned a position 

(i.e. the order in which they would act) within these groups of three subjects, with the 

constraint that after all rounds, every subject had been in all positions the same number of 

times. Subjects were assigned new positions after each round instead of keeping their 

positions fixed for two reasons: First, it would be unfair to subjects in middle positions in 

terms of payoffs, as there is a first-mover and last-mover advantage in this game; second, 

I thought that subjects would learn faster if they experienced the game from all player 

positions. 

Subjects determined the locations they wanted to choose by means of a slider that 

only lets them choose locations that are in their action space, and there is a button labeled 

“No Location” for choosing ai = OUT. Subjects were able to see all actions of their two 

group members’ previous choices in this round, i.e. player 2 sees player 1’s choice when 

he makes his decision and player 3 sees both choices from players 1 and 2. This was clearly 

represented on the slider and in written form on the decision screen. 

After each round, subjects saw a detailed feedback screen, indicating all chosen 

locations by all three group members and their respective points in this round, as well as 

feedback on all players’ payoffs in their group in this round. A subject’s total payoff in the 

experiment was the sum of all payoffs from all rounds in Euro, i.e. the exchange rate of 

points in the game to Euro was 1:1. Note that with these parameter choices losses are not 

possible in the experiment, as the minimum payoff a subject can get in each round is €0.05. 
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A Instructions and Questionnaire 

 

The experiment started with on-screen instructions where neutral framing was used. 

Instructions were followed by control questions; see Section A.3 in the appendix. After the 

24, 48 or 72 game rounds, a short questionnaire concluded the experiment.17 In addition, 

there were questions of the form “When you were in position 1, what did you do and why?” 

for all positions, as well as more subtle questions; see Section A in the appendix. 

 
B Treatments 

 

The baseline treatment 24R corresponds to the lab game described in Section 2.2 

played over 24 rounds, the second treatment changes the tiebreaking rule and the third 

and fourth treatment increase the number of rounds played; this is represented in Table 1. 

See the next section for details. 

Table 1: Treatments 

 

Treatment Rounds Observations Subjects Tiebreak rule 

24R 24 288 36 standard 

24R+A 24 288 36 alternative 

48R 48 576 36 standard 

72R 72 864 24 standard 

Notes: The standard tiebreak rule corresponds to the one in Section 2.2, namely that if two or more 

players have the same maximal number of votes, they split the prize evenly. The alternative rule is 

that these players enter a lottery, where one of them gets the whole prize. 

 

 
17 I elicited standard socioeconomics like age, gender, income and highest education, as well as a 

standard Cognitive Reflection Test (Frederick, 2005). On top of that I also used a short incentivized 
measure for social preferences, namely a variant of a test proposed in Thibaut and Kelley (1959). 
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3 Results 

 
For simplicity I will denote choice triples by (𝑎1, 𝑎2, 𝑎3),

18 and conditional choices will be 

written as 𝑎2(𝑎1= a) = c  for player 2 and 𝑎3 (𝑎1 = a, 𝑎2 = b) = c  for player 3.19 

As we have already seen in footnote 16 in Section A, due to the symmetric nature of 

the game around the median location of 25, many choice triples are symmetric and lead to 

the same payoff and vote shares, and are therefore handled as the same observation. So 

to merge all symmetric observations together, I transform all cases of (𝑎1> 25, 𝑎2, 𝑎3) into 

(50−𝑎1, 50−𝑎2, 50−𝑎3); I transform all cases of (𝑎1, 𝑎2> 25, 𝑎3) into (50−𝑎1, 50−𝑎2, 50−𝑎3) 

if 𝑎1∈ {OUT, 25}; and I transform all cases of (𝑎1, 𝑎2, 𝑎3> 25) into (50 −𝑎1, 50 −𝑎2, 50 −𝑎3) 

if 𝑎1∈ {OUT, 25} and a2 ∈ {OUT, 25}. Basically, any observation where a player is the first 

to choose a location 𝑎𝑖 that is not the median is equivalent to that player choosing location 

50 − 𝑎𝑖, and choices made by following players are adjusted accordingly.20 

 

 

3.1 Treatment 24R - Baseline 

 

In this treatment, the game described in Section 2.2 was played for 24 rounds. Three 

sessions with 12 subjects each were conducted, resulting in 288 observations (24 rounds 

x 4 groups x 3 sessions). 

Figure 1 shows the distribution of locational choice triples, split into rounds 1-12 and 

13-24. Note first that there is an absence of the unique SPNE outcome (25, OUT, 25) in 

rounds 1-12, and it is observed only two times in rounds 13-24 across all three sessions. 

In the first 12 rounds, the observation (17, 33, OUT) is most common. In this case, players 1 

and 2 “corner the market” and win, which means they locate in such a way that player 3 

has no possibility to enter and win the game. We can also see in Figure 1 that in rounds 

13-24, (17, 33, OUT ) is still the most frequent observation, but we also see a significant rise 

 
18 For example, (17, 33, OUT) means that the player in position 1 chose location 17, the player in position 

2 chose location 33 after observing player 1’s choice of location 17, and the player in position 3 did not 

choose a location. 
19 For example, if player 2 chooses location 33 after observing player 1’s choice of location 17, I would 
write 𝑎2(𝑎1 = 17) = 33. If player 3 then observes both these choices and chooses OUT, I would write 

𝑎3(𝑎1 = 17, 𝑎2 = 33) = OUT. 
20 For example, (25, 25, 23) =̂ (25, 25, 27), (OUT, 9, 33) =̂ (OUT, 41, 17) and (25,OUT,1) =̂ (25,OUT,49), 

where =̂ means that they are handled as the same observation. 
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of (17, 29, OUT ).21 The response by player 2 of 𝑎2 = 29 given 𝑎1 = 17 is in line with the 

SPNE, as player 3 can still not find a location to win or share the win, but player 2 gets more 

points than player 1 and wins alone. 

Overall, players in position 3 chose according to the SPNE a majority of the time (67% 

across all 24 rounds); this high frequency is not surprising, as player 3 has no uncertainty 

about the behavior of the other players. Players in position 2 chose according to the SPNE 

only 18% of the time. Player 1 chose according to the SPNE (i.e. a1 = 25) in 28% of 

observations. The choice of player 1 to favor 𝑎1 = 17, however, was payoff-maximizing in 

most cases given the behavior of players 2 and 3: The payoff of players in position 1 who 

choose 𝑎1 = 17 is about three times higher than the payoff of those who play 𝑎1 = 25; more 

on this in Section 3.3. 

 

 

3.2 Treatment 24R+A - different tiebreaking 

 
We have seen in treatment 24R that there is next to no play of the unique SPNE outcome, 

while (17, 33, OUT) is the dominating outcome. Reciprocity might be the cause of this 

behavior, as it could drive player 2 to play 𝑎2 = 33 given 𝑎1 = 17 to share the win with 

player 1: If player 2 realizes that he cannot win if 𝑎1 = 25 (see Section A), he might be 

thankful to player 1 and share the win with him while still keeping player 3 out of the game.22 

In treatment 24R+A, the next step was to include a different tiebreaking rule than in 

treatment 24R to deter reciprocal behavior and give the SPNE a better shot. Consequently, 

the tiebreaking rule in the baseline (i.e. if two or more players have the same number of 

points in a round, they split the prize evenly) was changed to a rule that undermines 

reciprocal and egalitarian incentives: If two or more players have the same number of 

points at the end of a round, one of them gets the full prize

 
21 The difference in (17, 29, OUT) in the first and second half of the game is significant at p = 0.003; OLS 

regression on the individual level with standard errors clustered by session, where the dependent variable 
is the fraction of plays of 𝑎2 = 29 given 𝑎1 = 17 by an individual subject, and the independent variable is 

a dummy for round 13-24; for the detailed specification, see footnote 26. 
22 An incentivized measure for social preferences was elicited in the experiment. The test of whether player 2’s 

response of a2 = 33 given a1 = 17 occurs more frequently for subjects with high social preferences was, 

however, inconclusive. 
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Figure 1 Learning in Treatment 24R 

 
 

 

 
Notes: Locational choice triples on the y-axis, frequency in percent on the x-axis; only 2 observations 

of the unique SPNE outcome; other triples with less than 20 obervations are merged in “other”; N= 

288.
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and the other(s) get(s) nothing, with equal chances.23 With this new tiebreaking rule, 

players in position 2 who choose 𝑎2 = 33 given 𝑎1 = 17 will now not split the prize with player 

1 but rather enter a lottery for the prize. According to the standard tiebreaking rule, player 

2 could (almost) be sure that he would split the prize with player 1; now, one of the two will 

get the whole prize, and players motivated by reciprocity will be deterred from choosing 𝑎2 = 

33 given 𝑎1 = 17 due to the fact that if risk is involved compared to sure decisions, generous 

giving is significantly reduced. Brock et al. (2013) observe this behavior in dictator games, and 

player 2 faces a choice akin to the dictator in these games, as he can either (in a majority of 

cases) take the whole prize for himself, or split it with player 1.24 On the other hand, if 

reciprocity does not explain this behavior, the new tiebreaking rule would not change 

behavior. As in the baseline, three sessions were conducted with new subjects, giving 288 

observations. 

Figure 2 shows that there are more observations of the SPNE outcome (highlighted) 

than in treatment 24R, although not significantly so (see Table 6 in the appendix). Overall 

choices did not change substantially compared to the baseline: The dominating presence of 

(17, 33, OUT) and the rise in (17, 29, OUT) can still be observed.25 If anything, reciprocal 

behavior got stronger, as we observe fewer plays of (17, 29, OUT ) than in the baseline and 

more plays of (25, 25, 25), which corresponds to a three-way tie. In fact, I detect no significant 

differences between treatment 24R and 24R+A in any variables. The corresponding tests 

based on regressions can be found in appendix A.4, Table 6. 

The number of plays according to the SPNE is also similar to the baseline: 28% of 

players in position 1, 21% of players in position 2 and 65% of players in position 3 chose 

actions in accordance with the SPNE. I conclude that the results from treatment 24R+A do 

not significantly deviate from those of treatment 24R. This, and the fact that there are no 

references in the questionnaires that players in position 2 play 𝑎2 (𝑎1 = 17) = 33 due to 
 

 

 

 
23 This new tiebreaking rule does not change the SPNE assuming risk neutrality, as in expectation the payoffs 

remain the same. 
24 Note that also in the case of (25, 25, 25), which makes up about 7% of the baseline sample, reciprocal 

behavior might be the cause of player 3’s choice to split the prize with players 1 and 2 instead of winning alone by 

choosing any location close to 25. 
25 As in treatment 24R, an OLS regression on the individual level clustered by session shows that the number 

of plays of a2(a1 = 17) = 29 rises significantly in the second half of the game, p = 0.044; see footnote 26 for a 

detailed specification. 
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Figure 2 Learning in Treatment 24R+A 

 
 

 

 
Notes: Locational choice triples on the y-axis, frequency in percent on the x-axis; triples with less 

than 20 observations are merged in “other”; unique SPNE outcome highlighted; N=288. 
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reciprocity, is a strong indication that prosocial preferences are unlikely to explain behavior in 

the treatment 24R. 

 

 

3.3 Treatments 48R and 72R - Giving Subjects more time to learn 

 
In treatment 48R the number of rounds of the game was increased to 48 and in treatment 

72R to 72 rounds. As we saw no significantly different behavior with the tiebreaking rule in 

treatment 24R+A, the tiebreaking rule of the baseline (if two or more subjects have the 

same number of points at the end of a round, all of them split the prize evenly) was 

reinstated for treatments 48R and 72R. 

The design choice to increase the length of the game follows from the observations 

made in the first two treatments: Learning could be observed, albeit slowly and not directly 

towards the SPNE. The extent of learning that can be observed in treatments 24R and 

24R+A is summarized in Table 2, where I pool all data from these two treatments and 

compare behavior in rounds 13 − 24 to behavior in rounds 1 − 12. Play according to the 

SPNE rose from rounds 1 − 12 to rounds 13 − 24 for player 3 (56% vs. 66%, p = .049, 

OLS regression26), and players in position 2 slowly learn to best respond to 𝑎1 = 17 with 

𝑎2 (𝑎1 = 17) = 29 (12% vs. 23%, p = .021, OLS regression, for specification see footnote 26). 

No significant learning can be observed for player 1, but this is not surprising as the subjects 

face a backward induction problem, so it makes sense that learning starts with players 2 and 

 
26  The regression that is used for testing has the form Yi,j = β0+β1∗Dummy+ci,j, where Y is the dependent 

variable of interest and Dummy represents a dummy variable to be tested that takes values j = {0, 1}, while i 

is the subject index. The dependent variable is a mean that is calculated individually for each subject i, and 
standard errors are clustered by session. The null hypothesis is β1 = 0. 

For example, if I want to test whether the frequency of SPNE play by player 1 (i.e. a1 = 25) increased in rounds 

13 − 24 compared to rounds 1 − 12, I calculate Yi,0 and Yi,1 for all i, where Yi,j =(number of times subject i 

played a1 = 25)/(number of times subject i was in position 1), and where j = 1 (0) if the round number is 13 

− 24 (1 − 12). I then run the above regression with the dummy variable taking value 1 if the round number is 13 

− 24, and 0 otherwise. 

If I want to test treatment differences, I construct a treatment dummy. For dependent variables which are 

conditional, e.g. a2(a1 = 17) = 29, Yi,j =(number of times subject i played a2(a1 = 17) = 29)/(number of 

times subject i was in position 2 and a1 = 17). To check SPNE play in general for players 2 (or 3), the 

dependent variable is Yi,j =(number of times subject i played a best response)/(number of times subject i was in 

position 2 (or 3)); best responses can be found in Table 5 in the appendix. 
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3. 
Table 2: Learning in Treatments 24R and 24R+A 

 

 Rounds 1-12 Rounds 13-24 p-value 

SPNE play by Player 1 21% 28% .259 

SPNE play by Player 2 17% 21% .442 

SPNE play by Player 3 56% 66% .049 

a2(a1 = 17) = 29 12% 23% .021 

Notes: P-value from an OLS regression, for detailed specification see footnote 26; observations from 

treatments 24R and 24R+A pooled; N=576. 

 

With time, more learning might be possible, so an increase in rounds appears to be 

the next reasonable step. New subjects were employed, and three sessions were conducted 

with a length of 48 rounds and 2 sessions with a length of 72 rounds.27,28 

Figure 3 shows results for the last two treatments, where we first see that the results 

for the first 24 rounds are similar to those of the first two treatments. In rounds 25 − 48, 

however, behavior changes substantially: The most frequent observation is the unique 

SPNE outcome with about 28%, and this number increases to 35% for rounds 49-72 in 

treatment 72R, while (17, 33, OUT ) is only the second most frequent observation. 
 

 
 

 
 

 

 
 

 
 

 

 

 

 

 
27 For rounds 1-24 and 25-48, 480 observations were collected from treatments 48R and 72R, while 192 
observations were collected for rounds 49-72 from treatment 72R. 
28 From here on out the data from treatments 48R and 72R is pooled for rounds 1 − 48 because I detect no 

significant differences in any variables between these treatments in rounds 1 − 24 and in rounds 25 − 48; see 

Tables 7 and 8 in appendix A.4. 

 



 

 
Figure 3 Learning in Treatments 48R and 72R 

 

 

 
 

 

 
Notes: Locational choice triples on the y-axis, frequency in percent on the x-axis; triples with less 

than 20 obervations are merged in “other”; unique SPNE outcome highlighted; N=480 for rounds 

1-48 and N=192 for rounds 49-72. 
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Concerning differences over time, I find that in rounds 25 − 48 the unique SPNE 

outcome is played significantly more often (p = 0.049, OLS regression, see footnote 26 for 

specification) than in rounds 1 − 24. In rounds 49 − 72, there is again a rise in (25, OUT, 

25) compared to rounds 25 − 48, but the rise is only weakly significant (p = 0.055, OLS 

regression, see footnote 26 for specification); see Table 9 in appendix A.4 for both 

regressions. The frequency of SPNE play also rises over time, as we can see in Table 3, but 

the most substantial change seems to occur in rounds 25 − 48; this will be explored further 

in the next section. 

Table 3: Learning over time 

 

SPNE play by Rounds 1-24 Rounds 25-48 Rounds 49-72 

Player 1 28% 41% 44% 

Player 2 23% 43% 49% 

Player 3 63% 84% 84% 

Notes: All treatments pooled; N=1056 for rounds 1-24, N= 480 for rounds 25-48, N= 192 for rounds 

49-72. 

 
 

 

3.4 A closer Look at Learning 

 
With the information gained in Sections 3.1 to 3.3, as well as utilizing insights gained from 

the questionnaires, there is evidence that learning to play the SPNE outcome is a multi-

step process in this game, which can be observed across all sessions at variable speeds. I 

will explain these stages in detail in this section, and show which steps lead from the 

players’ first play of (17, 33, OUT) to the unique SPNE outcome as the most frequent 

observation in the end.29 

 
Step 1. Player 1 and 2 corner the market: (17, 33, OUT) 

As we have seen in all treatments in Sections 3.1, 3.2 and 3.3, in early rounds of the game 

 
29 For the following analysis, I pool the data from all treatments, as OLS regressions show no significant 

differences across treatments; see Section A.4 in the appendix. 
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(17, 33, OUT) is the most frequent observation. Intuitively, this means that the players in 

position 1 and 2 share the win and make it impossible for player 3 to enter the game 

profitably, thereby “cornering the market”. In the first 24 rounds, 59% of players in position 

1 choose 𝑎1 = 17, and 55% of players in position 2 respond by playing 𝑎2 = 33 given 𝑎1 = 17 

(which is not a best response according to the SPNE), while players in position 3 make 

payoff-maximizing choices in a majority of cases (65%). Across all sessions, (17, 33, OUT ) 

is played 29% of the time in rounds 1-24. 

We learn from the questionnaires of treatments 24R and 24R+A, where the number of 

rounds was 24 and therefore relatively low, that position 3 is seen as the most powerful and 

“easy to play” by nearly all of the subjects, as there is no uncertainty about other players’ 

behavior when player 3 makes his decision. So it perhaps comes as no surprise that players 

in position 3 choose the payoff-maximizing 𝑎3 = OUT after 𝑎1 = 17 and 𝑎2 (𝑎1 = 17) = 33 

as their most frequent action. Additionally, choosing 𝑎2 = 33 after 𝑎1 = 17 in position 2 

was believed to be the payoff-maximizing play by about half of the subjects.30 Therefore, 

when players in position 1 learned that by playing 𝑎1 = 17 player 2 would react by playing 

𝑎2 = 33 and player 3 would stay out of the game, they continued with this strategy. 

About one third of players in position 1 do not believe entering at the median to be 

profitable according to the questionnaires, as they believe the other two players would 

respond by choosing locations close to player 1. About 20% of players in position 1 also 

say that they felt “lost” or “confused”, as they had to predict the following players’ behavior. 

And indeed, while 𝑎1 = 17 is not according to the SPNE, in terms of payoff it is favorable: 

Over all treatments, players in position 1 who play 𝑎1 = 17 earn 239% more than those who 

play 𝑎1 = 25 in rounds 1 − 24. 

To sum up, in the beginning of the game a majority of players in position 1 play 𝑎1 = 17, 

and most players in position 2 respond by playing 𝑎2(𝑎1 = 17) = 33. Player 3 then has 

an easy choice to make, as there is no profitable way for him to enter the game and win, 

and therefore is the only player that acts according to the SPNE. Deviations from this 

strategy also do not pay off in the short term for player 1, as 𝑎1 = 17 is far more profitable 

 
30 When we look at the questionnaires from treatments 24R and 24R+A, roughly 12% of subjects state that 

they had a hard time calculating the best response to a1 = 17 when they were in position 2, and 9% of subjects 

indicate that they were able to figure out that the best response to a1 = 17 is a2 = 29, but were unsure whether 

to make this choice as player 2 due to uncertainty about player 3’s behavior. 
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than 𝑎1 = 25 in early rounds of the game. Players in position 2 have a hard time to calculate 

the best response to 𝑎1 = 17, and given that they share a win with player 1 if they 

play 𝑎2(𝑎1 = 17) = 33, a majority of players in position 2 choose to continue with this 

strategy. These considerations put together explain that (17, 33, OUT ) is the most frequent 

outcome in early rounds of the game. 

 
Step 2. Player 2 starts to best-respond: (17, 29, OUT ) 

As we have seen in Sections 3.1 and 3.2, in rounds 13-24 the number of players in position 2 

responding to 𝑎1 = 17 with 𝑎2 = 29 (which is indeed their best response) rises significantly, 

while players in position 3 still choose the payoff-maximizing option of 𝑎3  = OUT a majority 

of the time (65%) given 𝑎2(𝑎1 = 17) = 29. The payoff of players in position 2 consequently 

rises in rounds 13-24 compared to rounds 1-12 by 20.2% (p = 0.038)31, as player 2 more often 

wins alone rather than share the win with player 1. 

 
Step 3. Player 1 chooses the median: (25, 𝑎2, 𝑎3): 

As players in position 1 start to lose more frequently given that player 2 best responds more 

often, a significant rise of 𝑎1 = 25 can be observed after round 24 (p = 0.022).32 What triggers 

this change? A location closer to the edge, i.e. 𝑎1 < 17, is almost never chosen by player 1 

(which is correct, as players that do choose these locations win less than 10% of cases). If a 

player deviates from 𝑎1 = 17, some players (10% in rounds 13 − 48) choose 𝑎1 = OUT and 

stay out of the game completely, thinking that there is no possible location to win. However, 

most deviations from 𝑎1 = 17 occur to 𝑎1 = 25 (84% in rounds 13 − 48), which is in accordance 

with the SPNE. 

These deviations from 𝑎1 = 17 occur even though it is still more profitable for player 1 to 

play 𝑎1 = 17 compared to 𝑎1 = 25 for most of the game (by 177% in rounds 13 − 24, and by 

48% in rounds 25 − 48). However, in rounds 49-72, enough players in position 2 best 

respond, so it gets more profitable for player 1 to play 𝑎1 = 25 over 𝑎1 = 17 by 8%. 

 
31 OLS regression on the individual level clustered by session across all treatments. Dependent variable is the 

mean payoff when in position 2, independent variable is a dummy for rounds 1-12 vs. 13-24; see footnote 26 
for detailed specification. 
32 OLS regression on the individual level clustered by session. Dependent variable is the frequency of choosing 

a1 = 25 when in position 1, independent variable is a dummy for rounds 25-72 vs. 1-24; see footnote 26 for 

detailed specification. 
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Step 4. The unique SPNE outcome is the most frequent observation: (25, OUT, 25) 

As player 1 shifts his behavior towards 𝑎1 = 25, the unique SPNE outcome is not played right 

away. In the first 24 rounds, only 22% of players in position 2 play 𝑎2 = 𝑂𝑈𝑇 after 𝑎1 = 25, 

which would be according to the SPNE. This number rises significantly to 67% in rounds 

25−48 and to 85% in rounds 49 − 72 (p = .043, OLS regression with a dummy for 

rounds 25 − 48 vs. 1 − 24, see footnote 26 for specification). 

After the early stages of the game, however, as we have seen in Section 3.3, (25, 

OUT, 25) is the most frequent observation overall in rounds 25 − 72, and the rise in 

plays of the unique SPNE outcome is significant compared to rounds 1 − 24. 

 

 

3.5 Summary of Results 

 

I will now summarize why players converge towards the unique SPNE outcome, 

given that initial play consists mainly of (17, 33, OUT). All deviations from this strategy 

are towards the SPNE: First, player 2 best responds to 𝑎1 = 17, and then as player 1 

loses more frequently he deviates to the SPNE action of 𝑎1 = 25 more often. As more 

players in position 1 play 𝑎1 = 25, players in position 2 also learn over time to best 

respond, and when they do, the unique SPNE outcome can emerge as the most frequent 

observation. 

However, it is player 2’s actions that are especially crucial for the emergence of the 

unique SPNE outcome. Seeing that player 3 is best responding in a majority of cases, 

and player 1 is profit maximizing (as 𝑎1 = 17 is on average far more profitable than 𝑎1 

= 25 given the behavior of the other players, except in very late stages of the game), 

it is therefore player 2’s behavior that changes most. In the beginning, player 2’s 

reluctance to best respond to 𝑎1 = 17 makes player 1’s deviation from the SPNE 

profitable. In rounds 13 − 24 player 2 starts to best respond more often. Given that 

player 3 mostly best responds to any (𝑎1, 𝑎2), and even more so in later stages of the 

game, after players in position 1 start to play 𝑎1 = 25 more frequently, it is again player 
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2’s realization that he cannot win and should best respond to 𝑎1 = 25 with 𝑎2 = OUT 

that drives the emergence of the unique SPNE outcome. 

Table 4 shows that across all player positions and sessions, there was considerable 

learning: For all given variables, actions according to the SPNE increased over time, and 

choices that are not in accordance with the SPNE decreased. I therefore conjecture that 

with more time and more learning, the prevalence of the SPNE outcome would be even 

stronger. 

 
Table 4: Summary Statistics 

 

 Round  

frequency of 1-24 25-48 49-72 p-value 

SPNE play in position 3 .65 .84 .84 .001 

SPNE play in position 2 .25 .43 .49 .001 

SPNE play in position 1 .30 .41 .47 .022 

a1 = 17 .59 .54 .44 .761 

a2 = 33 given a1 = 17 .55 .51 .50 .535 

a2 = 29 given a1 = 17 .31 .43 .44 .240 

a2 = OUT given a1 = 25 .22 .67 .85 .043 

(25, OUT, 25) .04 .28 .35 .007 

 
Notes: Observations from all treatments pooled; p-value for the round-dummy of an OLS regression 

on the individual level clustered by session, the dependent variable is the frequency of the variable 

on the left, independent variable is a dummy for rounds 25-72 vs. 1-24; see footnote 26 for detailed 

specification. 

 

4 Conclusion 

 

In this paper, I report on a theoretical and experimental investigation of a 3-player 

sequential-entry variant of Hotelling’s locational choice model (1929) that was proposed 

by Osborne and Kats. Despite clear predictions due to the uniqueness of the SPNE 

outcome, the experiment reveals that initial play in the experiment is not in accordance 
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with the SPNE. However, after many repetitions play does converge toward the unique 

SPNE outcome. 

As was stated in the introduction, this model can also be used to describe plurality-

rule elections. Even when behavior is not according to the SPNE, initial play suggests 

that a two-party system would emerge, so Duverger’s law is robust to violations of the 

SPNE in this variant of Hotelling’s model. 

On a final note, we find that in many finitely repeated games with a unique 

equilibrium prediction, these predictions are systematically violated when tested in the 

lab or empirically, even in simpler environments than the one considered in this paper. 

Examples include ultimatum games (e.g. Roth et al. (1991) or Slonim and Roth (1998)), 

public goods games (see Ledyard (1995) and Chaudhuri (2011)) or the centipede game 

(e.g. McKelvey and Palfrey (1992)). Therefore, it is perhaps surprising that play 

converges toward the unique SPNE outcome in the sequential Hotelling game at all. In 

fact, with a shorter time horizon, I would have concluded that also in this complicated 

setting, behavior does not converge to the SPNE outcome at all, as we can never know 

when we are dealing with the long run, until it is here. 
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A Appendix 

 
A.1 Proof for the SPNE of the sequential Hotelling game 

 
Lemma 1. In any SPNE outcome in the sequential Hotelling game, no players are losing. 

 
Proof. As players can always guarantee themselves a payoff of πi = 0 by choosing ai = 

OUT , a player will always have an incentive to deviate if he loses. 

Lemma 2. In any SPNE, if exactly two players enter the game, those players will enter 

at the median of 0.5. 

Proof. We assume that exactly two players i and j enter the game. If player i enters the 

game at a location ai < 0.5 (w.l.o.g.), player j wins if he locates at the median itself, as j 

gets half the votes from [0.5, 1], plus 
𝑥𝑗−𝑥𝑖

2
 , i.e. v = 0.5 + 

𝑥𝑗−𝑥𝑖

2
, which is more than half of 

the votes. 

If both players locate at the median, they get the same number of votes, and if one player 

would deviate that player would get less votes and lose, which can never be part of an SPNE 

by Lemma 1. 

Lemma 3. If player 1 enters the game at a1 < 0.5 and player 2 plays according to the 

following strategy profile 𝑎2̂, and player 3 plays a3 = OUT , then player 2 will win. 

 

 

Proof. With the above strategy 𝑎2̂, player 2 always gets more votes than player 1 because he 

locates closer to the median, i.e. 0.5 − a1 > a2 − 0.5. 

Theorem 1. All subgame-perfect Nash equilibria of the sequential Hotelling game are 
given by: 

 



29  

    

 

while player 3 chooses according to the following rules: 

 

1. If the set A = {a3|v3 > max(v1, v2)} is nonempty, i.e. if player 3 can attain v3 > 

max(v1, v2) by choosing some a3 ∈ [0, 1], he chooses one of these payoff-maximizing 

choices. 

2. If set A is empty and the set B = {a3|v3 = max(v1, v2)} is nonempty, i.e. player 3 can 

attain v3 = max(v1, v2) by choosing some a3 ∈ [0, 1], he chooses one of them. 

3. If both sets A and B are empty, a3 = OUT . 

 
Proof. As this is a backward induction problem, we start by looking at player 3’s 

strategy. As player 3 is the last player to act, he simply goes through all possible 

location choices and chooses one of the payoff-maximizing choices given (𝑎1, 𝑎2). 

Therefore, if player 3 chooses an 𝑎3 according to the above strategy profile, 𝑎3 is a 

best response to player 1 and 2’s actions.33 

As far as player 2’s best responses are concerned, we have four cases, depending 

on the action of player 1: 

 

Case 1: 𝑎1 = OUT 
 

Case 2: 𝑎1 <
1

6
 

Case 3: 𝑎1 ≥
1

6
 and 𝑎1 < 0.5 

 
33 Note as there are a great number of variations off the equilibrium path, player 3’s strategy given all possible 
histories (a1, a2) is too big to explicitly write down here. 
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Case 4: 𝑎1 = 0.5. 

We will go through the different cases one by one.34 Player 2 always has two goals, 

which he tries to fulfill in order. Goal 1: Anticipating player 3’s best responses, player 2 

first checks whether he can locate in such a way that it is not possible for player 3 to 

win the game, i.e. deterring player 3 from entering, while achieving v2 > v1. If goal 1 

can be achieved, player 2 wins alone, which is preferable to all other outcomes. If goal 

1 cannot be achieved, player 2 tries to achieve Goal 2: Player 2 tries to find a location 

such that he shares a win with the smallest number of players. Finally, if neither goal 1 nor 

goal 2 can be achieved by player 2, i.e. if player 2 cannot win, 𝑎2
∗ = OUT . 

 

Case 1: 𝑎1 = OUT 

In this case I show that player 2 cannot achieve goal 1, and he achieves goal 2 by playing 

𝑎2
∗(𝑎1 = 𝑂𝑈𝑇) = 0.5. 

If player 2 plays 𝑎2
∗(𝑎1 = 𝑂𝑈𝑇) = 0.5, player 3’s best response is to also locate at the median 

of 0.5 and share the win with player 2 by Lemma 2. As 𝑎2(𝑎1 = 𝑂𝑈𝑇) ≠ 0.5 cannot be part 

of an SPNE by Lemma 2 and Lemma 1, and as player 2 can guarantee himself a shared win 

with player 3 by playing 𝑎2
∗(𝑎1 = 𝑂𝑈𝑇) = 0.5, it is the best response. 

Case 2: 𝑎1 <
1

6
 

In this case I show that player 2 can achieve goal 1 by playing any 𝑎2
∗ (𝑎1 <

1

6
) 𝜖 [

2

3
−
𝑎1

3
,
2

3
+

𝑎1]. 

This means that player 2 wins alone by deterring player 3 from entering (i.e. 𝑎3 = 

OUT) while achieving 𝑣2 > 𝑣1 if 𝑎2
∗ (𝑎1 <

1

6
) 𝜖 [

2

3
−
𝑎1

3
,
2

3
+ 𝑎1]. 

The analysis of Case 2 is structured as follows: First I show that if player 2 locates out 

of the given best response range, player 3 would win alone; therefore, any action outside the 

best response range cannot be part of an SPNE by Lemma 1. Then I show that given 𝑎1 <

1

6
 all actions in [

2

3
−
𝑎1

3
,
2

3
+ 𝑎1] lead to player 2 winning alone, thereby achieving goal 1. 

 
34 Note that due to the symmetric nature of the game, we will omit all cases of a1 > 0.5 w.l.o.g. 
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3 

First note that we can exclude any 𝑎2 (𝑎1 <
1

6
) < 0.5 as best responses by player 2, 

as player 3 can then locate at the median and win alone. 

Next, I show that any 𝑎2 (𝑎1 <
1

6
) >

2

3
+ 𝑎1 cannot be a best response, as player 3 can 

then find a location 𝑎3 with 𝑎1 < 𝑎3 < 𝑎2 and win alone. If 𝑎2 =
2

3
+ 𝑎1 + 𝜀 where 𝜀 > 0 and 

such that 𝑎2 𝜖 (
2

3
+ 𝑎1, 1], the vote shares in this case are given by 𝑣1 =

𝑎1+𝑎3

2
, 𝑣2 = 1 −

𝑎2+𝑎3

2
 and 𝑣3 =

𝑎2−𝑎1

2
. For player 3 to enter, two inequalities have to be fulfilled: v3 > v1, 

which holds iff 𝑎3 >
2

3
− 𝑎1 + 𝜀, and v3 > v2, which holds iff 𝑎3 >

2

3
− 𝑎1 − 2𝜀. As the first 

two terms 
2

3
− 𝑎1 on the right hand side are the same in both inequalities, we see that as 

long as 𝜀 is positive, player 3 can enter the game and win alone. Therefore, any 

𝑎2 (𝑎1 <
1

6
) >

2

3
+ 𝑎1 cannot be a best response by Lemma 1. 

Now I show that 𝑎2 (𝑎1 <
1

6
) <  

2

3
−
𝑎1

3
 cannot be a best response. Suppose 𝑎2 =

2−𝑎1

3
− 𝜀 where 𝜀 is positive and such that 𝑎2𝜖 (𝑎1,

2−𝑎1

3
). I will show that player 3 can then locate at 

𝑎3 =
2

3
−
𝑎1

3
 and win alone. The vote shares in this case are given by 𝑣1 =

𝑎1+𝑎2

2
, 𝑣2 =

𝑎3−𝑎1

2
 and 𝑣3 = 1 −

𝑎2+𝑎3

2
.  Again, two inequalities have to be fulfilled for player 3 to enter 

and win: v3 > v1 and v3 > v2. v3 > v1 holds iff 𝑎3 <
2−𝑎1

3
+ 2𝜀, which simplifies to 0 < 2𝜀 

by plugging in 𝑎3 =
2

3
−
𝑎1

3
. v3 > v2 holds iff 𝑎3 < 1 +

𝑎1−𝑎2

2
, which simplifies to 𝑎1 > −

𝜀

2
 by 

plugging in 𝑎2 and a3; both inequalities are always fulfilled. As I have shown that if 

𝑎2 (𝑎1 <
1

6
) =

2

3
−
𝑎1

3
− 𝜀 player 3 can enter at 𝑎3 =

2

3
−
𝑎1

3
 and win alone, any 𝑎2 (𝑎1 <

1

6
) <

2

3
−

𝑎1

3
 cannot be a best response by Lemma 1. 

Now we have established that for all location choices by player 2 outside of 

[
2

3
−
𝑎1

3
,
2

3
+ 𝑎1] given 𝑎1 <

1

6
, player 3 can find a location to win alone, so these actions 

cannot be best responses for player 2 by Lemma 1. I proceed to show that for all location 

choices 𝑎2
∗ (𝑎1 <

1

6
)  ∈  [

2

3
−
𝑎1

3
,
2

3
+ 𝑎1], player 3 will play a3 = OUT. It then follows from 

Lemma 3 that 𝑎2
∗ (𝑎1 <

1

6
)  ∈  [

2

3
−
𝑎1

3
,
2

3
+ 𝑎1] is the best response correspondence for player 
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2 

6 

2 if  𝑎1 <
1

6
. I show this by going through all possible location choices a3 ∈ [0, 1] for player 3 

(Cases 2a-2e) and showing for each case that player 3 cannot win because either 𝑣3 > 𝑣2 or 

𝑣3 > 𝑣1 cannot be fulfilled.35 It then follows that player 3’s best response given the history 

𝑎1 <
1

6
, 𝑎2  ∈  [

2

3
−
𝑎1

3
,
2

3
+ 𝑎1], is a3 = OUT, as player 3 cannot win if he chooses any action other 

that a3 = OUT. 

 

(Case 2a) 𝑎3 < 𝑎1: To show that player 3 will not enter at 𝑎3 < 𝑎1, we have to show that 

player 3 loses if he enters at any a3 with 𝑎3 < 𝑎1 given the history 𝑎1 <
1

6
, 𝑎2  ∈

 [
2

3
−
𝑎1

3
,
2

3
+ 𝑎1]. In this case the vote shares are given by 𝑣1 =

𝑎2−𝑎3

2
, 𝑣2 = 1 −

𝑎1+𝑎2

2
 and 

𝑣3 =
𝑎1+𝑎2

2
, and therefore 𝑣3 > 𝑣2 iff 𝑎3 > 2 − 2𝑎1 − 𝑎2. Given player 2’s best response 

range 𝑎2
∗ (𝑎1 <

1

6
)  ∈  [

2

3
−
𝑎1

3
,
2

3
+ 𝑎1], 𝑎3 > 2 − 2𝑎1 − 𝑎2 is easiest to fulfill at the lower 

bound36 () for 𝑎2
∗ (𝑎1 <

1

6
). Therefore, if the inequality cannot be satisfied for the case of 

the lower bound of 𝑎2
∗, it cannot be satisfied for the whole best response range. If we plug 

in the lower bound, 𝑣3 > 𝑣2  iff 𝑎3 >
4

3
−
5𝑎1

3
. As 𝑎1 is bounded from above by 

1

6
, if we 

were to plug in 𝑎1 =
1

6
, then 𝑣3 > 𝑣2 iff 𝑎3 >

19

18
 , which can never be satisfied, so player 3 

will not enter in case 2a.  

(Case 2b) 𝑎3 = 𝑎1: To show that player 3 will not enter at 𝑎3 = 𝑎1, we must show that 

player 3 loses if he enters at 𝑎3 = 𝑎1 given the history (𝑎1 <
1

6
, 𝑎2 ∈ [

2

3
−
𝑎1

3
,
2

3
+ 𝑎1]). In 

this case 𝑣1 = 𝑣3 =
𝑎1+𝑎2

4
 and 𝑣2 = 1 −

𝑎1+𝑎2

2
, and 𝑣3 > 𝑣2 iff 𝑎3 > 

4

3
− 𝑎2. Given player 

2’s best response range, this inequality is easiest to fulfill at the upper bound for 

𝑎2
∗ (𝑎1 <

1

6
). If we plug in the upper bound, 𝑣3 > 𝑣2 iff 𝑎3 >

1

3
, which can never be true as 

𝑎3 = 𝑎1 <
1

6
, so player 3 cannot win in case 2b. 

(Case 2c) 𝑎1 < 𝑎3 < 𝑎2: To show that player 3 will not choose any a3 with 𝑎1 < 𝑎3 < 𝑎2, 

 
35 Note that in cases 2a-2e we have to derive player 3’s best responses because we did not explicitly write 
down player 3’s strategy given all possible histories. 
36 From here on out, “easiest to fulfill at the lower/upper bound” means that if the inequality is not fulfilled 

at the lower/upper bound, it cannot be fulfilled at all. 
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2 

we have to show that player 3 loses if he enters at any a3 with a1 < a3 < a2 given the history 

(𝑎1 <
1

6
, 𝑎2 ∈ [

2

3
−
𝑎1

3
,
2

3
+ 𝑎1]). In this case, the vote shares are given by 𝑣1 =

𝑎1+𝑎3

3
, 𝑣2 =

1 −
𝑎2+𝑎3

2
 and 𝑣3 =

𝑎2−𝑎1

2
. For player 3 to enter, two inequalities have to be fulfilled. 𝑣3 >

𝑣1 holds iff 2𝑎1 < 𝑎2 − 𝑎3 and 𝑣3 > 𝑣2 holds iff 𝑎1 > 2𝑎2 + 𝑎3 − 2. To see that both of 

these inequalities cannot be fulfilled at the same time, suppose 𝑎2 =
2

3
+ 𝑎1 − 𝜀, where 

𝜀 > 0 and such that 𝑎2 ∈ [
2

3
−
𝑎1

3
,
2

3
+ 𝑎1]. The two inequalities then simplify to 𝑎3 <

2

3
− 𝑎1 −

𝜀 and 𝑎3 >
2

3
− 𝑎1 + 2𝜀. We see that, as the first two terms 

2

3
− 𝑎1 on the right hand side 

are the same, as long as 𝜀 > 0, both inequalities cannot be fulfilled at the same time. It 

follows that player 3 cannot win in case 2c. 

(Case 2d) 𝑎3 = 𝑎2: To show that player 3 will not enter at 𝑎3 = 𝑎2, we have to show 

that player 3 loses if he enters at 𝑎3 = 𝑎2 given the history (𝑎1 <
1

6
, 𝑎2 ∈ [

2

3
−
𝑎1

3
,
2

3
+

𝑎1]). In this case the vote shares are given by 𝑣1 =
𝑎1+𝑎2

2
, 𝑣2 =

1

2
−
𝑎1+𝑎2

4
, and 𝑣3 > 𝑣1 

holds iff 𝑎2 <
2

3
− 𝑎1. This inequality can never be fulfilled as 𝑎1 <

1

6
 and player 2’s best 

response range is bounded from below by 
2

3
−
𝑎1

3
 , so player 3 cannot win in case 2d. 

(Case 2e) 𝑎3 > 𝑎2: To show that player 3 will not choose any 𝑎3 > 𝑎2, we must show that 

player 3 loses if he enters at any 𝑎3 > 𝑎2 given the history (𝑎1 <
1

6
, 𝑎2 ∈ [

2

3
−
𝑎1

3
,
2

3
+

𝑎1]). In this case the vote shares are given by 𝑣1 =
𝑎1+𝑎2

2
, 𝑣2 =

𝑎3−𝑎1

2
 and 𝑣3 = 1 −

𝑎2+𝑎3

2
, and therefore 𝑣3 > 𝑣2 iff 𝑎3 < 1 +

𝑎1−𝑎2

2
. As by assumption  𝑎3 > 𝑎2, if the 

 

right hand side of inequality 𝑎3 < 1 +
𝑎1−𝑎2

2
 should equal 𝑎2, player 3 cannot find a 

location such that 𝑣3 > 𝑣2 is fulfilled. So, if we solve the equation 𝑎2 = 1 +
𝑎1−𝑎2

2
 for 

𝑎2, we get the lower bound for player 2’s best response range, 𝑎2 =
2

3
−
𝑎1

3
. As 𝑎2 is 

subtracted in the inequality 𝑎3 < 1 +
𝑎1−𝑎2

2
, if 𝑎2 <

2

3
−
𝑎1

3
, player 3 can find a location such 

that both 𝑎3 > 𝑎2 and 𝑎2 < 1 +
𝑎1−𝑎2

2
 are fulfilled. However, if 𝑎2 ≥

2

3
−
𝑎1

3
, player 3 cannot 

find a location such that both  𝑎3 > 𝑎2 and 𝑎2 < 1 +
𝑎1−𝑎2

2
 are fulfilled. Therefore, player 3 
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will not enter the game at an  𝑎3with  𝑎3 > 𝑎2 after the history (𝑎1 <
1

6
, 𝑎2 ∈

[
2

3
−
𝑎1

3
,
2

3
+ 𝑎1]). 

 

To sum up, player 2 loses if he plays any 𝑎2
∗(𝑎1 <

1

6
, 𝑎2 ∉ [

2

3
−
𝑎1

3
,
2

3
+ 𝑎1], and 

player 2 can deter player 3 from entering the game if he plays any 𝑎2
∗(𝑎1 <

1

6
, 𝑎2 ∈

[
2

3
−
𝑎1

3
,
2

3
+ 𝑎1]. Player 2 therefore wins alone with this best response range by Lemma 

3, fulfilling Goal 1. 

 

Case 3: 
1

6
≤ 𝑎1 < 0.5 

In this case I show that player 2 can achieve goal 1 by playing any 𝑎2
∗ (

1

6
≤ 𝑎1 < 0.5) ∈

[
2−𝑎1

3
, 1 − 𝑎1).

37 This means that player 2 wins alone by deterring player 3 from entering 

while achieving 𝑣2 > 𝑣1 if 𝑎2
∗ (

1

6
≤ 𝑎1 < 0.5) ∈ [

2−𝑎1

3
, 1 − 𝑎1). The analysis of case 3 is 

structured similarly to case 2: First I show that if player 2 locates out of the given best 

response range, player 2 will either lose or tie for the win with player 1. Then 

I show that given 
1

6
≤ 𝑎1 < 0.5 all actions in [

2−𝑎1

3
, 1 − 𝑎1) lead to player 2 winning 

alone, thereby achieving goal 1. 

First note that we can exclude any 𝑎2 (
1

6
≤ 𝑎1 < 0.5) < 0.5 as best responses by player 

2, as player 3 can then locate at the median and win alone. 

Next, I show that any 𝑎2 (
1

6
≤ 𝑎1 < 0.5) ≥ 1 − 𝑎1 cannot be a best response. This 

stems from the fact that even if player 3 does not enter at all, player 2 will split the win 

with player 3 (in case of 𝑎2 (
1

6
≤ 𝑎1 < 0.5) = 1 − 𝑎1) or lose (in case of 𝑎2 (

1

6
≤ 𝑎1 <

0.5) > 1 − 𝑎1), as player 1 would then be located as close or closer to the median as 

player 2, thereby gaining the same number of votes or more votes than player 2. This 

 
37 Again, I omit the case of 𝑎1 > 0.5 due to symmetry w.l.o.g. 
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would in the best case fulfill goal 2 for player 2 (splitting the win with player 1), but as 

we are about to see, player 2 can fulfill goal 1 by playing any 𝑎2
∗ (

1

6
≤ 𝑎1 < 0.5) ∈

[
2−𝑎1

3
, 1 − 𝑎1), so any 𝑎2 (

1

6
≤ 𝑎1 < 0.5) ≥ 1 − 𝑎1 cannot be a best response given 

1

6
≤

𝑎1 < 0.5.  

Now I show that 𝑎2 (
1

6
≤ 𝑎1 < 0.5) <

2−𝑎1

3
 cannot be a best response. Suppose 

1

6
≤

𝑎1 < 0.5 and 𝑎2 =
2−𝑎1

3
− 𝜀 where 𝜀 is positive and such that 𝑎2 ∈ (𝑎1,

2−𝑎1

3
). I will show 

that player 3 can then locate at 𝑎3 =
2

3
−
𝑎1

3
 and win alone. The vote shares in this case are 

given by 𝑣1 =
𝑎1+𝑎2

2
, 𝑣2 =

𝑎3−𝑎1

2
 and 𝑣3 = 1 −

𝑎2+𝑎3

2
. Two inequalities have to be fulfilled 

for player 3 to enter and win: 𝑣3 > 𝑣1 and 𝑣3 > 𝑣2. 𝑣3 > 𝑣2 holds iff 𝑎3 < 1 +
𝑎1−𝑎2

2
, 

which simplifies to 𝑎1 > −
𝜀

2
 by plugging in 𝑎2 and 𝑎3, which is always satisfied. 𝑣3 >

𝑣1 holds iff 𝑎3 > −2 + 𝑎1 + 2𝑎2,  which simplifies to 0 < 𝜀 by plugging in 𝑎2 and 𝑎3, which 

is also always satisfied. As I have shown that if 𝑎2 (
1

6
≤ 𝑎1 < 0.5) =

2−𝑎1

3
−  𝜀 player 3 can 

enter at 𝑎3 =
2

3
−
𝑎1

3
 and win alone, any 𝑎2 (

1

6
≤ 𝑎1 < 0.5) <

2−𝑎1

3
 cannot be a best 

response by Lemma 1. 

Now we have established that for all location choices by player 2 outside of 

[
2−𝑎1

3
, 1 − 𝑎1) given 

1

6
≤ 𝑎1 < 0.5, player 2 will lose or split the win with player 1, so 

these actions cannot be best responses for player 2 as he can achieve goal 1. I proceed 

to show that for all location choices 𝑎2
∗ (

1

6
≤ 𝑎1 < 0.5) ∈ [

2−𝑎1

3
, 1 − 𝑎1), player 3 will play 

𝑎3 = 𝑂𝑈𝑇. It then follows from Lemma 3 that 𝑎2
∗ (

1

6
≤ 𝑎1 < 0.5) ∈ [

2−𝑎1

3
, 1 − 𝑎1) is the 

best response correspondence for player 2 if 
1

6
≤ 𝑎1 < 0.5 because player 2 wins alone 

and thereby fulfills goal 1. I show this by going through all possible location choices 𝑎3 ∈

[0,1] for player 3 (Cases 3a-3e) and showing for each case that player 3 cannot win 

because either 𝑣3 > 𝑣2 or 𝑣3 > 𝑣1 cannot be fulfilled.38 It then follows that player 3’s 

 
38 Note that in cases 2a-2e we have to derive player 3’s best responses because we did not explicitly write 

down player 3’s strategy given all possible histories. 
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2 6 

best response given the history (
1

6
≤ 𝑎1 < 0.5, 𝑎2 ∈ [

2−𝑎1

3
, 1 − 𝑎1)) is 𝑎3 = 𝑂𝑈𝑇, as player 

3 cannot win if he chooses any action other that 𝑎3 = 𝑂𝑈𝑇. 

 

(Case 3a) 𝑎3 < 𝑎1: To show that player 3 will not enter at 𝑎3 < 𝑎1, we have to show 

that player 3 loses if he enters at any 𝑎3 with 𝑎3 < 𝑎1 given the history (
1

6
≤ 𝑎1 <

0.5, 𝑎2 ∈ [
2−𝑎1

3
, 1 − 𝑎1)). In this case the vote shares are given by 𝑣1 =

𝑎2−𝑎3

2
, 𝑣2 = 1 −

𝑎1+𝑎2

2
 and 𝑣3 =

𝑎1+𝑎3

2
, and therefore 𝑣3 > 𝑣2 iff 𝑎3 > 2 − 2𝑎1 − 𝑎2. Given player 2’s best 

response range 𝑎2
∗ (

1

6
≤ 𝑎1 < 0.5) ∈ [

2−𝑎1

3
, 1 − 𝑎1), 𝑎3 > 2 − 2𝑎1 − 𝑎2 is easiest to fulfill 

at the lower bound for 𝑎2
∗ (𝑎1 <

1

6
). If we plug in the lower bound, 𝑣3 > 𝑣2 iff 𝑎3 >

4

3
−

5𝑎1

3
. As 𝑎1 is bounded from above by 0.5, if we were to plug in 𝑎1 = 0.5, then 𝑣3 > 𝑣2 iff 

𝑎3 >
1

2
, which of course can never be satisfied as by assumption 𝑎3 < 𝑎1, so player 3 will 

not enter in case 3a. 

(Case 3b) 𝑎3 = 𝑎1: To show that player 3 will not enter at  𝑎3 = 𝑎1, we have to show 

that player 3 loses if he enters at  𝑎3 = 𝑎1 given the history (
1

6
≤ 𝑎1 < 0.5, 𝑎2 ∈

[
2−𝑎1

3
, 1 − 𝑎1)). In this case 𝑣1 = 𝑣3 =

𝑎1+𝑎2

4
 and 𝑣2 = 1 −

𝑎1+𝑎2

2
, and 𝑣3 > 𝑣2 iff 𝑎1 >

4

3
− 𝑎2. Suppose 𝑎2 = 1 − 𝑎1 − 𝜀, where 𝜀 > 0 and such that 𝑎2 ∈ [

2−𝑎1

3
, 1 − 𝑎1).  𝑎1 >

4

3
− 𝑎2 then simplifies to 0 >

1

3
+ 𝜀, which can never be true, so player 3 cannot win in case 

3b. 

(Case 3c) 𝑎1 < 𝑎3 < 𝑎2: To show that player 3 will not choose any 𝑎3 with  𝑎1 < 𝑎3 < 𝑎2, 

we have to show that player 3 loses if he enters at any 𝑎3 with  𝑎1 < 𝑎3 < 𝑎2 given the 

history (
1

6
≤ 𝑎1 < 0.5, 𝑎2 ∈ [

2−𝑎1

3
, 1 − 𝑎1)). In this case, the vote shares are given by  

𝑣1 =
𝑎1+𝑎3

2
, 𝑣2 = 1 −

𝑎2+𝑎3

2
 and 𝑣3 =

𝑎2−𝑎1

2
. For player 3 to enter, two inequalities have 

to be fulfilled: 𝑣3 > 𝑣1 holds iff 2𝑎1 < 𝑎2 − 𝑎3and 𝑣3 > 𝑣2 holds iff 𝑎1 < 2𝑎2 + 𝑎3 − 2. 

To see that both of these inequalities cannot be fulfilled at the same time, suppose 𝑎2 =

1 − 𝑎1 − 𝜀, where 𝜀 > 0 and such that 𝑎2 ∈ [
2−𝑎1

3
, 1 − 𝑎1). The two inequalities then 
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6 

2 3 

simplify to 𝑎3 < 1 − 3𝑎1 − 𝜀 and 𝑎3 > 3𝑎1 + 2𝜀.  Both of these inequalities are easiest to 

fulfill for 𝑎1 =
1

6
. If we plug in 𝑎1 =

1

6
, we get 𝑎3 <

1

2
− 𝜀 and 𝑎3 >

1

2
+ 2𝜀. We see that as 

long as 𝜀 is positive, the inequalities cannot be fulfilled at the same time, so it follows that 

player 3 cannot win in case 3c. 

(Case 3d) 𝑎3 = 𝑎2: To show that player 3 will not enter at 𝑎3 = 𝑎2, we have to show that 

player 3 loses if he enters at 𝑎3 = 𝑎2 given the history (
1

6
≤ 𝑎1 < 0.5, 𝑎2 ∈ [

2−𝑎1

3
, 1 − 𝑎1)). 

In this case the vote shares are given by 𝑣1 =
𝑎1+𝑎2

2
 and 𝑣2 = 𝑣3 =

1

2
−
𝑎1+𝑎2

4
, and 𝑣3 >

𝑣1 holds iff 𝑎2 <
2

3
− 𝑎1. Given 

1

6
≤ 𝑎1 < 0.5, this inequality is easiest to fulfill at the lower 

bound of 𝑎1. Plugging in 𝑎1 =
1

6
, 𝑎2 <

2

3
− 𝑎1 simplifies to 𝑎2 <

1

2
, which can never be 

fulfilled as 𝑎3 = 𝑎2 and 𝑎3 cannot be lower than 0.5 within the given response range 𝑎2 ∈

[
2−𝑎1

3
, 1 − 𝑎1). Therefore, player 3 cannot win in case 2d. 

 

(Case 3e) 𝑎3 > 𝑎2: To show that player 3 will not choose any 𝑎3 with 𝑎3 > 𝑎2, we must 
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show that player 3 loses if he enters at any 𝑎3 with 𝑎3 > 𝑎2 given the history (
1

6
≤ 𝑎1 <

0.5, 𝑎2 ∈ [
2−𝑎1

3
, 1 − 𝑎1)). In this case, the vote shares are given by 𝑣1 =

𝑎1+𝑎2

2
, 𝑣2 =

𝑎3−𝑎1

2
 

and 𝑣3 = 1 −
𝑎2+𝑎3

2
. For player 3 to enter, 𝑣3 > 𝑣1 must be fulfilled, which holds iff 𝑎3 < 2 −

𝑎1 − 2𝑎2. To see that this inequality cannot be fulfilled, suppose 𝑎2 =
2

3
−
𝑎1

3
+ 𝜀, where 

𝜀 > 0 and such that 𝑎2 ∈ [
2−𝑎1

3
, 1 − 𝑎1). When we plug in 𝑎2 =

2

3
−
𝑎1

3
+ 𝜀, 𝑎3 < 2 − 𝑎1 −

2𝑎2 simplifies to 𝑎3 <
2

3
−
𝑎1

3
− 2𝜀. We see that this inequality can never be fulfilled as 

long as 𝜀 is positive because by assumption 𝑎3 > 𝑎2  and 𝑎3 would have to be lower than 

the lower bound of [
2−𝑎1

3
, 1 − 𝑎1), so it follows that player 3 cannot win in case 3e. 

To sum up, player 2 loses or ties for the win if he plays any (
1

6
≤ 𝑎1 < 0.5, 𝑎2 ∉

[
2−𝑎1

3
, 1 − 𝑎1)), and player 2 can deter player 3 from entering the game if he plays any 𝑎2

∗ ∈

[
2−𝑎1

3
, 1 − 𝑎1). Player 2 therefore wins alone with this best response range by Lemma 3, 

fulfilling goal 1. 

 

Case 4: 𝑎1 = 0.5 

In this case I show that player 2 can fulfill neither goal 1 nor goal 2 by choosing any 

𝑎2 ∈ [0,1] so 𝑎2
∗(𝑎1 = 0.5) = 𝑂𝑈𝑇 is the best response. First, if 𝑎2 < 0.5 (which also 

covers the case of 𝑎2 > 0.5 w.l.o.g. because of the symmetric nature of the game) given 

𝑎1 = 0.5, player 3 can play an 𝑎3 such that 0.5 − 𝑎2 > 𝑎3 − 0.5 (i.e. he adopts a location 

closer to the middle) and win alone, so any 𝑎2 ≠ 0.5 cannot be part of an SPNE by 

Lemma 1. Second, if player 2 chooses 𝑎2(𝑎1 = 0.5) = 0.5, player 3 can choose a location 

close to the median and win alone. Therefore, player 2 cannot win by playing any 𝑎2 ∈

[0,1] given 𝑎1 = 0.5, so 𝑎2
∗(𝑎1 = 0.5) = 𝑂𝑈𝑇 is the best response. 
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Putting it all together  

Finally, we derive player 1’s action in an SPNE by looking at the outcomes for player 1 

in cases 1-4. In case 1, player 1 chooses 𝑎1 = 𝑂𝑈𝑇, which is preferable to the outcomes in 

cases 2 and 3, where player 3 does not enter and 𝑣2 > 𝑣1 by Lemma 3, so player 1 loses. 

However, if 𝑎1 = 0.5 (case 4), player 2’s best response 𝑎2
∗(𝑎1 = 0.5) = 𝑂𝑈𝑇. Player 3 will 

play 𝑎3 = 0.5 given the history (𝑎1 = 0.5, 𝑎2
∗(𝑎1 = 0.5) = 𝑂𝑈𝑇) by Lemma 2 in an SPNE, 

resulting in a shared win of players 1 and 3 in case 4. As a shared win with player 3 is 

preferable to 𝑎1 = 𝑂𝑈𝑇, player 1’s optimal action in an SPNE is 𝑎1
∗ = 0.5. 

Corollary 1. The unique subgame-perfect Nash equilibrium outcome for the sequential 

Hotelling game is given by {𝑎1 = 0.5, 𝑎2 = 𝑂𝑈𝑇, 𝑎3 = 0.5}. 

 

Proof. By Theorem 1, we know that 𝑎1
∗ = 0.5 and 𝑎2

∗(𝑎1
∗) = 𝑂𝑈𝑇, and it follows from Lemma 

2 that 𝑎3
∗(𝑎1

∗ , 𝑎2
∗) = 0.5. As all actions according to the SPNE are unique on the 

equilibrium path, the SPNE outcome is therefore also unique. 

Corollary 2. Due to the symmetry of the game, assuming 𝑎1 ≥ 0.5, the SPNE for the 

sequential Hotelling game can also be written as 

 

while player 3 chooses according to the following rules: 

 

1. If the set 𝐴 = {𝑎3|𝑣3 > max(𝑣1, 𝑣2)} is nonempty, i.e. if player 3 can attain 𝑣3 >
max(𝑣1, 𝑣2) by choosing some 𝑎3 ∈ [0,1] he chooses one of these payoff-maximizing 

choices. 

2. If set A is empty and the set 𝐵 = {𝑎3|𝑣3 = max(𝑣1, 𝑣2)} is nonempty, i.e. player 3 can 
attain 𝑣3 = max(𝑣1, 𝑣2) by choosing some 𝑎3 ∈ [0,1], he chooses one of them. 
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3. If both sets A and B are empty, a3 = OUT . 

Proof. In Theorem 1, we assumed w.l.o.g. that 𝑎1 ≤ 0.5 because of the symmetry of the 

game around the median of 0.5. The SPNE can also be rewritten as above while assuming 

𝑎1 ≥ 0.5 and the proof for Theorem 1 is then equivalent if we substitute for any 𝑎𝑖 its 

symmetric value 1 − 𝑎𝑖.
39 

 
 
 
 

 
39 I define 1 − OUT = OUT. 



 

A.2 The lab game 

 

The implementation of the sequential Hotelling game in the lab necessarily uses a discrete 

“voter base” (i.e. the locations 1 to 49), and not a continuous one. Therefore, the action 

spaces of all players are drastically smaller, and can be represented in a single table. In 

this section I will describe this Table 5 in detail, and show that the SPNE in the lab game 

results in the same unique SPNE outcome qualitatively, i.e. the first and the last player 

enter at the median, and the second player opts out. 

In Table 5 we see all possible actions 𝑎1 by player 1 in the first column, and in 

column 2 we see all possible actions by player 2 given all actions by player 1, i.e. all 

𝑎2(𝑎1).
40 In column 3 of Table 5 we see all best response correspondences by player 3 

given all possible histories of 𝑎1 and 𝑎2, i.e. 𝑎3
∗(𝑎1, 𝑎2). Finally, the last column indicates 

winning positions for a specific sequence of moves.41 

In Table 5 we can therefore represent the complete action spaces by players 1 and 2, 

while player 3’s strategies 𝑎3
∗(𝑎1, 𝑎2) in the table are best responses to all possible 

histories. Best responses to player 1’s actions (while accounting for player 3’s best 

responses) by player 2 are bold, and player 1’s payoff-maximizing choice of 𝑎1
∗ = 25 is also 

bold. 

As an example, if 𝑎1 = 𝑂𝑈𝑇, player 2 in principle has three options of choosing 

𝑎2(𝑎1 = 𝑂𝑈𝑇): 𝑎2(𝑎1 = 𝑂𝑈𝑇) = 𝑂𝑈𝑇, 𝑎2(𝑎1 = 𝑂𝑈𝑇) ∈ [1, 5, . . . , 17, 21] or 𝑎2(𝑎1 =

𝑂𝑈𝑇) = 25. If he chooses either 𝑎2(𝑎1 = 𝑂𝑈𝑇) = 𝑂𝑈𝑇 or 𝑎2(𝑎1 = 𝑂𝑈𝑇) < 25, player 3 

plays one of his best responses 𝑎3
∗ given (𝑎1, 𝑎2) and wins alone (as indicated by the last 

column). As player 2 can split the win with player 3 by playing 𝑎2(𝑎1 = 𝑂𝑈𝑇) = 25, that is 

his best response to 𝑎1 = 𝑂𝑈𝑇 as it maximizes his payoff in the subgame following 𝑎1 =

𝑂𝑈𝑇. 

Player 2 chooses his best responses by looking at all possible outcomes in the subgame 

following a specific action 𝑎1, anticipating player 3’s best responses. From these outcomes 

 
40 Note that as in the sequential Hotelling game, we omit cases of 𝑎1 > 25 due to the symmetry of the 

game around the median. Furthermore, we omit cases 𝑎2 > 25 given 𝑎1 = 𝑂𝑈𝑇 or 𝑎1 = 25, as with these 

histories of player 1’s action, symmetry is still preserved. See footnote 16 for a more detailed explanation. 
41 As the calculations for player 3’s reaction correspondences found in Table 5 are simple and lengthy, the 

calculations are skipped here, but are available from the author upon request. 



 

(shown in the last column) he chooses the most favorable, i.e. he first chooses an outcome 

where he wins alone (“2” in the last column), then an outcome where he shares the win with 

another player (e.g. “2 & 3”), and if no such choices are available, he chooses 𝑎2 = 𝑂𝑈𝑇 as 

his best response. 

Similarly for player 1, as we assume that he anticipates the best responses by players 2 

and 3 following his actions in any SPNE, player 1 knows that if he chooses 𝑎1 = 𝑂𝑈𝑇  

players 2 and 3 will win, if he chooses 𝑎1 < 25 player 2 will win, and if he chooses 𝑎1 =

25 he will split the win with player 3, so 𝑎1 = 25 is his payoff-maximizing choice and 

therefore the only possibility for 𝑎1
∗ in an SPNE. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

Table 5: SPNE for the lab case 

 

𝑎1 𝑎2 given 𝑎1 𝑎3
∗  given {𝑎1, 𝑎2} Winning Position(s) 

OUT OUT 𝑎3 ∈ X3 \ OUT 3 

 {1, . . . , 21} 𝑎3 ∈ [a2 + 2, . . . , 48 − a2] 3 

 25 25 2 & 3 

1 OUT 𝑎3 ∈ [3, . . . , 47] 3 
 1 𝑎3 ∈ [3, . . . , 49] 3 
 {5, . . . , 29} 𝑎3 ∈ [𝑎2+ 2, . . . , 47.5 –

𝑎2

2
 ] 3 

 33 33 1 & 2 & 3 

 37 𝑎3 ∈ [27, . . . , 35] 3 

 {41, . . . , 49} 𝑎3 ∈ [1 + 2(50 − 𝑎2), . . . , 𝑎2− 2] 3 

9 OUT 𝑎3 ∈ [11, . . . , 39] 3 

 {1, 5} 𝑎3 ∈ [11, . . . , 42.5 + 
𝑎2

2
] 3 

 9 𝑎3 ∈ [11, . . . , 49] 3 

 {13, . . . , 25} 𝑎3 ∈ [𝑎2+ 2, . . . , 51.5 −
𝑎2

2
  ] 3 

 29 31 3 
 {33,37} OUT 2 

 41 25 1 & 2 & 3 

 45 𝑎3 ∈ [19, . . . , 27] 3 

 49 𝑎3 ∈ [11, . . . , 31] 3 

17 OUT 𝑎3 ∈ [19, . . . , 31] 3 

 {1, . . . , 17} 𝑎3 ∈ [19, . . . , 38.5 + 
𝑎2

2
] 3 

 21 𝑎3 ∈ [23, . . . , 39] 3 

 25 𝑎3 ∈ [27, . . . , 31] 3 

 29 OUT 2 

 33 OUT 1 & 2 

 {37, . . . , 45} OUT 1 

 49 17 1 & 2 & 3 

25 OUT 25 1 & 3 

 {1, . . . , 9} 𝑎3 ∈ [27, . . . , 34.5 + 
𝑎2

2
] 3 

 {13, . . . , 21} 𝑎3 ∈ [27, . . . , 48 − 𝑎2] 3 

 25 𝑎3 ∈ [11, . . . , 39] \ {25} 3 

Notes: This table provides the complete action space for players 1 and 2 in the lab game, as well 

as best responses given all histories for player 3; best responses bold for players 1 and 2; Section 

A.2 describes this table in detail; note that for all sets given here, a3 ∈ X3 and a2 ∈ X2 must still be 

satisfied. 

Implications of Table 5 

 

It follows from Table 5 that the SPNE in the lab game is characterized as follows, which is the 
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same SPNE we use throughout the text: 

  

while player 3 chooses according to the following rule: 

 

1. If the set 𝐴 = {𝑎3|𝑣3 > max(𝑣1, 𝑣2)} is nonempty, i.e. if player 3 can attain 𝑣3 >
max(𝑣1, 𝑣2) by choosing some 𝑎3 ∈ [0,1] he chooses one of these payoff-maximizing 

choices. 

2. If set A is empty and the set 𝐵 = {𝑎3|𝑣3 = max(𝑣1, 𝑣2)} is nonempty, i.e. player 3 can 
attain 𝑣3 = max(𝑣1, 𝑣2) by choosing some 𝑎3 ∈ [0,1], he chooses one of them. 

3. If both sets A and B are empty, a3 = OUT . 

 

The actions that are part of the SPNE are printed in bold in Table 5. The unique 

subgame-perfect Nash equilibrium outcome is therefore given by {𝑎1 = 0.5, 𝑎2 =

𝑂𝑈𝑇, 𝑎3 = 0.5}, as all actions along the equilibrium path are unique. This result is then 

the same as in the sequential Hotelling game. Note that the logic behind the emergence 

of the unique SPNE is also very similar: As player 2 can guarantee himself a win in all 

subgames following 𝑎1 < 25 by deterring player 3 from entering, these actions by player 

1 can never be part of an SPNE. In any SPNE, the only action where player 1 is winning is 

𝑎1 = 25, so that is player 1’s unique action on the equilibrium path. 
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A.3 Instructions (Baseline Treatment 24R) 

 

Welcome to this experiment. You will be asked to make a series of choices that will 

affect your payoff after the experiment is over. Please pay close attention to the 

instructions, and do not hesitate to raise your hand in case you have any questions. 

Throughout the experiment, the different payment options will be listed in Euro. In 

the end, you will receive the exact amount you earn in Euros. 

The experiment will last for 24 rounds and will be followed by a short questionnaire. 

In each round, you will be in a group with two other participants, and each of you will 

make choices sequentially to control the biggest part of a line in order to get a payment. 

 

Over 24 rounds, you and two other participants will form a group. All three of you 

will be asked to choose locations on a line. In each round, the other two members of 

your group will be chosen randomly, meaning that you might get completely new group 

members or one or two from previous rounds. 

A representation of this line is given on top of the screen. The numbers on the line 

correspond to the locations you can choose in each round. The lowest location you can 

choose is 1, and the highest is 49. 

A cash reward will go to the participant in a group who gets the most points in a 

given round. To get points, you have to control locations on the line. Each location on 

the line is worth a point, and the locations on the edges (1 and 49) are worth half a 

point, bringing the total number of points each round to 48. 

 

The rules for how to control locations are as follows: 

If you have chosen the leftmost location on the line, you control all locations to the 

left of you, your own chosen location and all locations that are halfway between your 

location and the next occupied location to your right. 

If you have chosen the rightmost location, you control all locations to the right of 

you, your own chosen location, and all locations that are halfway between your location 

and the next occupied location to your left. 

If your location is between two other chosen locations (meaning that your chosen 

location is neither the leftmost not the rightmost), you control your own chosen 

locations, as well as all locations that are halfway between your location and the next 

occupied location to your right and all locations that are halfway between your location 
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and the next occupied location to your left. 

In essence, this means that you control a location if it is closer to your location than 

to any other location chosen by your other group members. If a location is equally close 

to two chosen locations (for example location 8 if both location 7 and 9 have been 

chosen), the points for controlling this location are split equally. 

 

You also have the option to not choose a location at all. Therefore, it is possible 

that three, two, one or no participant has chosen a location on the line in any given 

round. 

Also, if two or more group members have chosen the same location, all points 

earned are split equally between them. 

At the end of the instructions, examples will be provided to further illustrate the 

rules. 

 

You and the other two members of your group make your location choice 

sequentially, so that you make your decision in one of three positions: 

If you are in position 1, you will make your choice first. If you are in position 2, you 

will make your choice after observing the choice of the participant in position 1 in your 

group. If you are in position 3, you will make your choice after observing the choice of 

the participants in positions 1 and 2 in your group. 

 

The locations you can choose from are different depending on your position: If you 

are in position 1, you can choose from the locations 1,9,17,25,33,41,49 

If you are in position 2, you can choose from the locations 1,5,9,13,.,37,41,45,49 

If you are in position 3, you can choose from the locations 1,3,5,7,,43,45,47,49 

This means that the later you have to make your decision, the more locations you 

are able to choose from. 

 

The payoffs are as follows: Each round, you get a fixed payment of 25 Cents. If 

you choose a location in that round, you have to pay costs of 20 Cents. If you do not 

choose a location that round, you incur no costs that round. 

Then, at the end of any given round, you get a payment of 2 Euros if you have the 

highest number of points in your group. If two or more group members have the same 

highest number of points, one of them gets the payment of 2 Euros randomly with equal 
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chance, and the others receive nothing. 

Your payoff at the end of the experiment will be the sum of all payments from all 

rounds. 

 

After each round, you will see a feedback screen indicating each of your group 

members’ chosen locations, their corresponding points from controlled locations of the 

line, and your payment from that round. 

At the beginning of each round, you will be randomly assigned two new group 

members as well as randomly assigned a new position. However, over the course of the 

experiment, you will be in each position the same number of times, meaning that you 

will be eight times in each of the three positions. 

 
A  Questionnaire 

 

Describe your behavior when you were in position 1. How was your thought process 

behind your decisions when you were in position 1? 

Describe your behavior when you were in position 2. How was your thought process 

behind your decisions when you were in position 2? 

Describe your behavior when you were in position 3. How was your thought process 

behind your decisions when you were in position 3? 

Imagine that you are in position 2 during the experiment, and you observe that the 

group member in position 1 has chosen location 17. Which location would you choose 

(if any), and why? 

Imagine that you are in position 2 during the experiment, and you observe that the 

group member in position 1 has chosen location 25. Which location would you choose 

(if any), and why? 
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A.4 Regression Tests for differences between treatments 

 

Table 6 reports on the differences between treatment 24R and 24R+A, and we see 

that there are at most weakly significant differences (indicated by the stars). For a 

detailed explanation of the regression tests used here, see footnote 26. 

Table 6: Regressions for Treatment Effects - Treatment 24R vs. Treatment 24R+A 

 

mean of Treatment 24R Constant R2 

a1 = 17 .094 .614 .039 

a1 = 25 −.049 .261 .017 

a2 = 33 given a1 = 17 .038 .382 .006 

a2 = 29 given a1 = 17 .028 .162 .008 

a2 = 25 given a1 = 25 −.052 .167 .039 

a2 = OUT given a1 = 25 −.036
∗ .043 .085 

payoff-maximizing pl. 3 .122
∗ .548 .066 

plays according to SPNE −.029
∗ .022 .011 

Notes: Each line represents a separate regression on the individual (subject) level with standard errors 

clustered by session; dependent variable is the mean of the binary variable on the left per subject; 

see footnote 26 for detailed specification; N=72 across all regressions (2 treatments * 12 subjects per 

session * 3 sessions per treatment); stars are given as follows: *: p<0.10; **: p<0.05; ***: p<0.01. 
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Table 7 reports on treatment differences for rounds 1 − 24 across all four 

treatments. We see that there are at most weakly significant differences (indicated by 

the stars). The regression we use for testing has the form Yi,j,k = β0 + β1 ∗ Treatment48R 

+ β2 ∗ Treatment72R + Ei,j,k, where Y is the dependent variable of interest on the left 

hand side, i is the subject index, j and k take values 0 or 1 (but cannot both have the 

value 1) and correspond to treatments 48R and 72R. Treatment 48R and Treatment 

72R are dummy variables. The dependent variable is a mean that is calculated for each 

subject i, and standard errors are clustered by session. The null hypotheses to be tested 

are β1 = 0 and β2 = 0. 

For example Y3,1,0 would be the mean of a left hand side variable for subject 3, who was in 

treatment 48R, over all 24 rounds. For further examples, see footnote 26. 

Table 7: Treatment Effects for Round 1-24 - Treatment 24R and 24R+A vs. Treatment 48R and 

72R: No Significant Differences 

 

mean of Treatment 48R Treatment 72R Constant R2 

a1 = 17 −.155 −.127 .658 .097 

a1 = 25 .130 .127 .238 .110 

a2 = 33 given a1 = 17 −.205
∗ −.087 .399 .186 

a2 = 29 given a1 = 17 .047 −.040 .175 .044 

a2 = 25 given a1 = 25 .000 .014 .142 .002 

a2 = OUT given a1 = 25 .120 .066
∗ .023 .214 

payoff-maximizing pl. 3 .075 .099
∗ .609 .037 

plays according to SPNE .116 .096
∗ .349 .121 

Notes: Each line represents a separate regression on the individual (subject) level with standard errors 

clustered by session; dependent variable is the mean of the binary variable on the left per subject; see 

footnote 26 for detailed specification (here we have two treatment dummies except for one, and both 

are tested); N=132 across all regressions (4 treatments * 12 subjects per session * 3(2) sessions per 

treatment); stars are given as follows: *: p<0.10; **: p<0.05; ***: p<0.01. 
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Table 8 reports on treatment effects between treatments 48R and 72R, and we see 

that there are no significant differences. For a detailed explanation of the regression 

tests used here, see footnote 26. 

Table 8: Treatment Effects for Rounds 25-48 - Treatment 48R vs. Treatment 72R: 

No Significant Differences 

 

mean of Treatment 72R Constant R2 

a1 = 17 .034 .517 .005 

a1 = 25 .000 .417 .000 

a2 = 33 given a1 = 17 .220 .181 .177 

a2 = 29 given a1 = 17 −.193 .312 .236 

a2 = 25 given a1 = 25 −.005 .073 .002 

a2 = OUT given a1 = 25 .005 .281 .000 

payoff-maximizing pl. 3 .017 .837 .002 

plays according to SPNE −.026 .576 ..003 

Notes: Each line represents a separate regression on the individual (subject) level with standard errors 

clustered by session; dependent variable is the mean of the binary variable on the left per subject; 

see footnote 26 for detailed specification; N=60 across all regressions (12 subjects per session * 5 

sessions); stars are given as follows: *: p<0.10; **: p<0.05; ***: p<0.01. 

 

Table 9 tests whether there is a significant rise in plays of the unique SPNE in 

rounds 1 − 24 compared to rounds 25 − 48, and in rounds 25 − 48 compared to rounds 

49 − 72. The first difference is significant, the second one is not. For a detailed 

explanation of the regression tests used here, see footnote 26. 
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Table 9: Regression for Learning to play (25, OUT, 25) 

 

 Round Effect Constant R2 N 

Rounds 1-24 vs. 25-48 .143
∗∗ −.081 .111 228 

Rounds 25-48 vs. 49-72 .143
∗ .063 .036 120 

Notes: Each line represents a separate regression on the individual (subject) level with standard errors 

clustered by session; dependent variable is fraction of times a subject was in a play of (25, OUT, 25) 

in any position; round effect is a dummy variable that takes the value 0 for the earlier rounds and 

1 for the later rounds in each line; see footnote 26 for detailed specification; the same coefficient of 

.143 in both lines is not an artifact and arose by chance; stars are given as follows: *: p<0.10; **: 

p<0.05; ***: p<0.01. 


